Propagators for the time-dependent Kohn–Sham equations
نویسندگان
چکیده
منابع مشابه
Propagators for the time-dependent Kohn-Sham equations.
In this paper we address the problem of the numerical integration of the time-dependent Schrodinger equation i partial differential (t)phi=Hphi. In particular, we are concerned with the important case where H is the self-consistent Kohn-Sham Hamiltonian that stems from time-dependent functional theory. As the Kohn-Sham potential depends parametrically on the time-dependent density, H is in gene...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملSymplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian.
Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrödinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some num...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملoptimization with the time-dependent navier-stokes equations as constraints
in this paper, optimal distributed control of the time-dependent navier-stokes equations is considered. the control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. a mixed numerical method involving a quasi-newton algorithm, a novel calculation of the gradients and an inhomogeneous navier-stokes solver, to find the opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2004
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.1774980